

OpenFlow and On Demand networks

Mounira Msahli1, Guy Pujolle2, Ahmed Serhrouchni1, Ahmad Fadlallah1,3, Fouad Guenane2,
1Télécom ParisTech, Paris, France

2 LIP6 Laboratory, University of Paris 6, Paris, France
3Faculty of Computer Studies, Arab Open University, Beirut, Lebanon

{Mounira.Msahli, Ahmed.Serhrouchni, Ahmad.Fadlallah}@telecom-paristech.fr
{Guy.Pujolle, Fouad.Guenane}@lip6.fr

Abstract—The exponential growth of the Internet and the

diversity of services delivered to the end users, such as Cloud

computing, have catalyzed researches on new generation

networks. Hence, several proposals have been made to change the

network applications and Internet media; in particular network

virtualization is in the center of research interest. It is widely

considered given its ability of dynamic programming, energy

saving and low cost. This promising paradigm boosts different

researches in literature. Openflow, AKARI and 4ward projects

are concrete examples. They follow common approaches of

virtualization but with different characteristics. In this paper, we

present an analysis and comparison between these projects. We

mainly focus on Openflow solution to validate on demand virtual

network architecture based on the Mininet simulator. This work

is part of the On-Demand research project sponsored by

European Regional Development Fund.

Index Terms—Network Virtualization, On-Demand, Openflow,

Mininet.

I. INTRODUCTION

The concept of network virtualization is considered as a
main way for Internet evolution [1]. It is defined by [2] as
follows: “A Networking environment supports network
virtualization if it allows coexistence of multiple virtual
networks on the same physical substrate”. This technology
offers many advantages like reducing the cost of network
deployment especially the Total Cost of Ownership (TCO),
rapid deployment and adaptability. Therefore, a number of
past and present researches on the issue have been done to
develop new architectures and concepts such as the
FEDERICA project [2,3,4], which combines network control
mechanisms with virtualization techniques, and VINI project
[5], which is considered as an instantiation of overlay
networks. In addition, we find in the literature three most
recent projects, named GENI [6] in USA, 4ward [7] in Europe
and AKARI [8] in Japan.

GENI with its OpenFlow solution [9] adopts a clean slate
approach [10]. This latter has proposed a completely
redesigned architecture. It was considered the base element for
new generation network researches. OpenFlow defines the
virtualization as a slice of network resource on space and time.

Regarding the 4ward, it presents network virtualization as
coexistence of several networks on the common physical
infrastructure. Its main specificity is the presentation of virtual
network business model with three actors: VNP (Virtual

Network Provider), VNO (Virtual Network Operator) and InP
(Infrastructure Provider).

With respect to AKARI project, it is based on the principle
of Competition and Natural Selection. This later means that
the best and optimal network virtualization solution is
automatically selected from several competitive "clean slate"
architecture propositions.
Among these projects mentioned above, only OpenFlow
proposes its own simulator, called “Mininet”[11] in addition
to many other network components such as Flowvisor (the
network hypervisor) [12].

This paper analyzes and compares the mentioned projects
(GENI, 4WARD and AKARI), with a main focus on
Openflow solution to validate on-demand virtual network
architecture based on the Mininet simulator. It is organized as
follows: Section 2 analyzes the three virtual network
approaches proposed by Openflow, AKARI and 4ward.
Section 3 shows a comparison between them based essentially
on the flexibility, programmability and scalability. Section 4
presents the on demand network architecture. Section 5
describes the simulation of the on demand network
architecture using open flow simulator Mininet combined with
the openflow flowvisor. Finally, Section 6 concludes the paper
and presents our forthcoming works.

II. RESEARCH APPROACHES FOR NETWORK VIRTUALIZATION

In this section, we describe deeply the three projects
already mentioned.

A. OpenFlow

Fig. 1. OpenFlow network architecture

Initially, Openflow approach was the separation of two

usual functions: control and forwarding (data path) often found
in network devices such as router. Thus, there are two network
components: the switch which guarantees the data forwarding
and the controller that makes routing decisions. The
communication between Controllers and switches uses the
OpenFlow protocol [8] defining its own set of messages
(packet-received, send-packet-out, etc.).

Openflow approach has moved to the network
virtualization and consequently network hypervisor has been
introduced, named flowvisor. As shown in Figure 1, the
flowvisor plays the role of proxy between switches and
controllers. Compared with the virtualization of operating
systems, the flowvisor corresponds to the virtualization layer
located between the hardware layer (OpenFlow-enabled
switches) and the software layer (OpenFlow controllers).

The Flowvisor divides network into logical partitions called
slices. One slice corresponds to the data flows running on
switches’ topology [13]. Slices work independently and
separately. Each one controls only its own packet transmission
and has a controller. Thus, the same hardware forwarding plane
is shared by multiple logical or virtual networks.

Flowvisor takes into account quality of service and security
constraints since it offers a number of isolation mechanisms
like OpenFlow control isolation, bandwidth isolation, topology
isolation, and flow entries isolation (it counts flow entries in
each slice and ensures that it does not exceed a prefixed limit).

The idea of OpenFlow has led to concrete products: Open
Flow Switch(for switches), NOX[15] (for controllers) and
Flowvisor [12]. In addition, the OpenFlow Solution is
validated using its own Mininet simulator. It is also worth-
mentioning that several network equipment manufacturers
(Cisco, HP, Juniper, etc.) have integrated the OpenFlow
protocol in their products.

Finally, Open Networking Foundation (ONF) adopted the
OpenFlow approach as its first standard for Software-Defined
Networking (SDN) [16].

B. 4WARD

Fig. 2. Business model of virtual network

The 4ward project defines virtual network architecture related
to three actors: Infrastructure providers (InP), Virtual Network
Providers (VNP) and Virtual Network Operators (VNO) (see
Figure 2).

• The Infrastructure Provider (InP) is responsible for
the maintenance of physical resources like routers,
network links, and wireless infrastructure. It enables
virtualization on network equipment.

• The Virtual network provider (VNP) is in charge of
virtual network construction using virtual resources
or partial topologies provided by one or more InPs. It
also ensures the virtual network management.

• The Virtual Network Operator (VNO) is responsible
for Virtual Network configuration. It connects
customers to virtual network services.

In order to precise the limits and the responsibilities of each
actor, 4ward defines interactions between them:

• VNO can request a VNP to create a new virtual
network and to modify or to withdraw an existing
one. This is depicted with (1) in Figure 2.

• VNP can demand and negotiate network resources
from InP. After resources allocation, it can request
the installation of the virtual network and ask the
migration of virtual nodes (between infrastructure
providers). This is represented by the (2) in figure 2.

• Infrastructure provider can accept or decline the
request of virtual network creation. This is shown by
(3) in figure 2.

The highlight of 4ward virtualization approach is the
ability to encompass wired and wireless networks. This
project has dealt with numerous aspects of quality of service
and mapping processes for assigning virtual networks to
shared substrates networks.

The disadvantage of 4ward solution is the shortage of its
implementation and validation. It roughly remains on the
theoretical state.

C. AKARI

AKARI defines network virtualization as the technology
that allows a shared physical core network to appear as
multiple logical networks [17]. It enables users to construct,
deploy, and evaluate multiple network architectures on a
shared core network. For AKARI, There are three possible
virtual network models, detailed in Figure 3:

• Isolated virtual network (Figure 3-a): its purpose is to
enable the same physical resources to be shared by
multiple independent and isolated logical networks.

• Transitive Virtual Network (Figure 3-b): its objective
is to facilitate the migration from current architecture
to the newly developed.

• Overlaid Virtual Network (Figure 3-c): It is defined as
multiple and simultaneous architectures implemented
using the same resources.

Fig. 3. AKARI architecture for network virtualization [8]

AKARI details four requirements to be considered in
network virtualization architecture design:

• Determine in which layer virtualization will be
performed.

• Resource management and the operational cost must
be well measured because of the presence of
distributed management plan shared by multiple
cooperative virtual networks.

• Scalability mainly in isolated networks presented
above.

• Virtualization should not only be limited to the
network-layer but also studied in the physical layer.
Since optical and wireless networks continue to be
more familiar technologies in the future, it is suitable
to investigate the problem regarding isolation and
allocation of existing physical resources.

AKARI model is limited to a general description of the
network virtualization architecture highlighting the
requirements of its realization but without any precision on
how to modulate or/and to implement this proposal.

III. COMPARISON OF DIFFERENT VIRTUAL
NETWORK SCHEMES

This section presents a qualitative comparison between
virtual network schemes described in section II.

Comparison criteria mentioned in Table-1 are enthused by
other researches [1, 18, 19] and motivated by On-Demand
project. As said before, the purpose of the project is to offer on
demand network services using virtualization technologies and
dynamic programming equipment.

4ward is the only project that defines the virtual network
actors but it has unfortunately remained a theoretical model
without any continuity. On the other hand, AKARI project
presents rules that must be respected for designing efficient
virtual network architecture. This talented architecture should

verify certain requirements and takes into account the current
problems of the Internet. Likewise, AKARI is still a theoretical
proposal without implementation.

TABLE I. COMPARISON OF VIRTUAL NETWORK SCHEMES

Characteristics 4WARD AKARI OpenFlow

Scalability Theoretical
Model

Theoretical
Model

Not finalized

Virtualization
Layer

All layers All layers All layers

Virtualized
infrastructure
actors

(InP, VNP,
VNO)

Not defined Not defined

Standardization VNRG-IRTF
FGFN-ITU-T

ITU-T OpenFlow
ONF

Interoperability Theoretical
model

Theoretical
model

Limited

Programmability Programmable Not defined Programmable
Availability Defined in

theoretical
model

Not defined Not defined

Maturity Medium Medium High
Virtualization
Layer

All layers Not defined All layers

Products No product No product OpenFlow
components
(Open vSwitch,
NOX, etc…)

OpenFlow is the only solution that has implemented and

imposed its model despite of some drawbacks concerning its
scalability. This implementation has proved its feasibility,
efficiency and maturity; that is why it has been approved by
several most network equipment manufacturers like Cisco and
Juniper.

Among all presented network virtualization models in table
I, there is no solution that satisfies all required characteristics.
In other words, there is no perfect model. Hence, it is very
interesting to design a perfect model that answers all needs of
network virtualization, but it should prove its feasibility.
According to the latter sentence, OpenFlow seems to be the
satisfactory solution for the future network virtualization. This
justifies our choice for the openflow architecture to simulate
the On demand network architecture.

IV. OUR ON DEMAND NETWORK ARCHITECTURE

The aims of On-Demand project are to design and to
provision a network architecture that meets the following
requirements:

• Virtualization: that takes into account the current
network virtualization solutions in terms of maturity
and efficiency,

• Programmability: dynamically reconfigurable
architecture,

• Scalability: the ability to meet the growing demand
of network resources.

In this section we propose on demand architecture
presented in figure 4 that combines the advantages of the three

schemes (4WARD, AKARI and OpenFlow) and responds to
On-Demand project goals:

• It uses the implemented OpenFlow components that
will be more detailed in the simulation section, hence
based on Table I it is a programmable architecture,

• It takes into account the constraints proposed by
AKARI. Indeed in our proposition, virtualization
affects all layers; the scalability requirement will be
validated in simulation section but the operational
cost of this architecture is not treated in this article.

• It considers the definition of the virtual network
actors provided by 4WARD:

Fig. 4. On demand network architecture

The physical Infrastructure Provider (InP) is the responsible
for the establishment, the maintenance and the configuration of
OpenFlow enabled switches.

The Virtual Network Provider manages the flowvisor, sets
slices and shares the logical management of switches with InP.
It is also responsible for the network resources allocation to the
Virtual Network Operator with the InP.

The controller is managed by the Virtual Network Operator
(VNO), which connects the end-users to virtual network
services.

This architecture satisfies On-Demand project requirements
since it provides on demand network services using OpenFlow
standard.

V. ON DEMAND ARCHITECTURE SIMULATION

This section presents the simulation of on demand network
architecture (described in the previous section) using
OpenFlow Simulator. It describes the simulation environment,
and the simulation results.

A. Simulation Environment

As illustrated in figure 4, three Openflow components are
needed: Controller, OpenFlow-enabled switch and flowvisor.

In OpenFlow, like in Software-Defined Network SDN,
there is a separation between control and forwarding planes
guaranteed by:

• Network operating systems, represented by Openflow
Controllers like NOX[15], Beacon[20] and
Maestro[21], control network using the
functionalities involving access control, network
virtualization and energy management.

• OpenFlow Switch consists of a secure channel to the
controller and one or more tables, which ensure
packet lookups and switching. It provides three
features: forwarding packets’ flow to a given port (or
ports), encapsulating packets using secure channel
[22] and sending it to the controller.

• The third component used in this simulation is the
Flowvisor, responsible for the network virtualization
by setting network resources slices and assigning
their control to the controller. Controller’s Slice
policy fixes slice’s rules.

Mininet is an Openflow prototyping environment, used to
implement, test and validate an OpenFlow architecture in a
large topology. The current Mininet version 1.0.0 can simulate
only the Openflow switch and controllers because it does not
contain the flowvisor software.

To overcome this problem, the best solution is to simulate a
switches’ network using Mininet and to connect it to flowvisor
playing the role of remote controller. To realize this simulation,
we install each component (Flowvisor and NOX controller)
and the Mininet simulator in three different virtual machines
and we connect between them.

B. Simulation Results

This simulation is the first step to validate the concept of on
demand network architecture

TABLE II. VALIDATION SET UP TIME AND END TO END BANDWIDTH

Switches Number Set up time End to End bandwidth

50 66.572 s 189 Mbits/s
200 273.003 s 50,4 Mbits/s

300 500.184 s 41.1 Mbits/s
400 834.043 s 28.6 Mbits/s

This simulation assumes that the flowvisor is already set and its
configuration time is neglected. We create only one slice
management which includes all network switches. Setup time
is the time required to create Mininet Switches plus necessary
time to make link between switches’ network and flowvisor
plus needed time to make link between flowvisor and NOX
controller. These results give us an idea about On demand
architecture deployment. As shown in this table, the time
required for virtual network implementation is about few
minutes. The main purpose of this simulation is to test
scalability of our on demand architecture by varying number of
switches deployed. The scalability criterion is maintained even
with the slight degradation of the bandwidth.

VI. CONCLUSION

In this paper we have presented three virtual network
proposals provided by AKARI, 4ward and Openflow projects.
We have made a comparison between them based on several
criteria such as maturity and programmability. OpenFlow is
selected as the most appropriate solution for the On-demand
project due to its deployability, maturity and programmability.
Then we have presented On demand network architecture
simulation with Openflow simulator “Mininet” and the
software Flowvisor.

Simulation of this architecture is the first step in the On-
demand project. It will actually be used to implement a secure
private cloud. This will constitute our future works.

AKNOWLEDGEMENT

 This work has been supported by the FEDER5
ONDEMAND project sponsored by European Regional
Development Fund (http://www.network-ondemand.com).

REFERENCES

[1] T.Anderson, L.Peterson, S.Shenker, J.Turner “Overcoming the
Internet Impasse through Virtualization”, Computer, vol. 38, no.
4, Apr. 2005, pp. 34–41.

[2] N.M. Mosharaf, Kabir Chowdhury, Raouf Boutaba A survey of
network virtualization”, Computer Networks: The International
Journal of Computer and Telecommunications Networking ,
Avril 2010.

[3] P. Szegedi, S. Figuerola, M. Campanella, V. Maglaris, C.
Cervell-Pastor, With evolution for revolution: the FEDERICA
approach, IEEE Communications Magazine 47 (7) (2009) 34–
39.

[4] P. Kauffman, M. Roesler, U. Monaco, A. Sevasti, S. Figuerola,
A. Berna, J. Pons, D. Kagoleras, J.-M. Uze, P. Sjödin, M.
Hidell, L.D. Cristina Cervelló-Pastor, R. Machado, Evaluation
of current network control and management plane for multi-
domain network infrastructure, FEDERICA Deliverable (2008)
(Id: DJRA1.1).

[5] A. Bavier, N. Feamster, M. Huang, L. Peterson, J. Rexford, In
VINI veritas: realistic and controlled network experimentation,
in: Proceedings of the SIGCOMM’06, ACM, New York, NY,
USA, 2006.

[6] L.Peterson, T. Anderson, D.Blumenthal,D.Casey,
D.Clark,D.Estrin, J.Evans,D.Raychaudhuri, M.Reiter, J.Rexford,
S.Shenker, John Wroclawski, GDD-06-08 : GENI: Global
Environment for Network Innovations, August 2006.

[7] S.Baucke, C.Görg, M.Achemlal, T.Almeida, S.Baucke, R.
Bless, M.Bourguiba, J.Mari, L.Caeiro, J.Carapinha, F.Cardoso
L.Correia, M.Dianati, A.Feldmann, C.Görg, I.Grothues,
I.Houidi, J.Jimenez, M.Kind, Y.Lemieux, W.Louati, L.Mathy
O.Maennel, P.Papadimitriou, J.Sachs, S.Perez Sanchez,
A.Serrador, I.Seskar, C.Werle, F.Wolff, A.Wundsam, Y.Zaki
D. Zeghlache, L.Zhao, Virtualisation Approach: Concept,
4WARD Deliverable (2009) (Id: FP7-ICT-2007-1-216041-
4WARD / D-3.1.1).

[8] H.Harai, M.Inoue, H. Otsuki, T.Kuri, K.Nakauchi, H.Furukawa,
T. Miyazawa, S.Xu, V.P. Kafle, T.Umezawa, M.Ohnishi,
K.Fujikawa, R.Li, M.Andre, S.Decugis, C.Peng, H.Yagi,
M.Kamiya, M.Murata, F.Teraoka, H.Morikawa, A.Nakao,

M.Ohta, H.Imaizumi, M. Hosokawa, T.Aoyama, New
Generation Network Architecture AKARI Conceptual
Design,AKARI Deliverable (2009).

[9] N.McKeown, T.Anderson, H.Balakrishnan, G.Parulkar,
L.Peterson, J.Rexford, S.Shenker, J.Turner, OpenFlow:
Enabling Innovation in Campus Networks, ACM SIGCOMM
Computer Communication Review, Volume 38, Number 2,
April 2008

[10] A.Feldmann, Internet clean-slate design: what and why, ACM
SIGCOMM Computer Communication Review, Volume 37
Issue 3, July 2007.

[11] B.Lantz, B.Heller, N.McKeown, A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks, permission,
Hotnets ’10, ACM, October 2010, USA.

[12] R. Sherwood, G.Gibby, K.Yapy, G.Appenzellery, M.Casado,
N.McKeowny, G.Parulkary, FlowVisor: A Network
Virtualization Layer, October 2009,USA.

[13] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, S.
Shenker, “Extending Networking into the Virtualization Layer,”
HotNets-VIII, Oct. 22-23, 2009.

[14] J.Naous, D.Erickson, G. Adam Covington, G.Appenzeller,
 N.McKeown, Implementing an OpenFlow switch on the
NetFPGA platform, in: ANCS '08 Proceedings of the 4th
ACM/IEEE,ACM,USA,2008 .

[15] N.Gude, T.Koponen, J.Pettit, B.Pfaff, M.Casado, N.McKeown,
S.Shenker, NOX: Towards an Operating System for Networks,
ACM SIGCOMM Computer Communication Review, Vol 38,
Number 3, July 2008.

[16] J.Rexford, Programming languages for programmable networks,
POPL '12 Volume 47 Issue 1, page 215-216 ACM, USA,
January 2012.

[17] T.Aoyama, A New Generation Network: Beyond the Internet
and NGN, IEEE Communications Magazine, May 2009.

[18] B. Belter, M. Campanella, F. Farina, J. Garcia-Espin, J. Jofre, P.
Kaufman, R.Krzywania, L.Lechert, F. Loui, R. Nejabati, V.
Reijs, C. Tziouvaras, T. Vlachogiannis, D. Wilson,
Virtualisation Services and Framework – Study, GÉANT
Delivrable (2012). (Id: GN3-12-123).

[19] B.Melander, V.Souza, V.Fusenig, A.Sharma, M.Meulle,
D.Audsin, P.Murray, S.Sae Lor, L.Vaquero, T.Begin, P.
Gon_calves, G.Koslovski, S.Roy, W.Louati, M.Mechtri,
H.Medhioub, D.Zeghlach, M.Hidell, R.Stadler, P.Sjodin,
D.Turull, F.Wuhib, P.Vicat-Blanc, D.Dudkowski, J.Carapinha,
M.Melo, J.Soares, R.Monteiro, D.Gillblad, R.Steinert,
B.Bjurling, B.Levin, A.Miron, P.Aranda, I.Menem, Cloud
Network Architecture Description, SAIL Deliverable (2011),
(FP7-ICT-2009-5-257448-SAIL/D-D.1).

[20] A.Voellmy, J.Wang, Scalable Software Defined Network
Controllers, SIGCOMM’12,ACM, Finland August 2012

[21] Z.Cai, A.L.Cox,T.S.Eugene, Maestro: A System for Scalable
OpenFlow Control, 21st Large Installation System
Administration Conference (LISA '07), USA, 2007.

[22] B.Pfa, B.Lantz, B.Heller, C.Barker, D.Cohn, D.Talayco,
D.Erickson, E.Crabbe, G.Gibb, G.Appenzeller, J.Tourrilhes,
J.Pettit, K. Yap, L.Poutievski,M.Casado, M.Takahashi,
M.Kobayashi, N.McKeown, P.Balland, R.Ramanathan,R.Price,
R.Sherwood, S.Das, T.Yabe, Y. Yiakoumis, Z.Lajos Kis.
OpenFlow Switch Specification (Version 1.1.0 Implemented),
(2011).

