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Abstract—The exponential growth of the Internet and the 

diversity of services delivered to the end users, such as Cloud 

computing, have catalyzed researches on new generation 

networks. Hence, several proposals have been made to change the 

network applications and Internet media; in particular network 

virtualization is in the center of research interest. It is widely 

considered given its ability of dynamic programming, energy 

saving and low cost. This promising paradigm boosts different 

researches in literature. Openflow, AKARI and 4ward projects 

are concrete examples. They follow common approaches of 

virtualization but with different characteristics. In this paper, we 

present an analysis and comparison between these projects.  We 

mainly focus on Openflow solution to validate on demand virtual 

network architecture based on the Mininet simulator. This work 

is part of the On-Demand research project sponsored by 

European Regional Development Fund. 

Index Terms—Network Virtualization, On-Demand, Openflow, 

Mininet. 

I. INTRODUCTION  

The concept of network virtualization is considered as a 
main way for Internet evolution [1]. It is defined by [2] as 
follows: “A Networking environment supports network 
virtualization if it allows coexistence of multiple virtual 
networks on the same physical substrate”. This technology 
offers many advantages like reducing the cost of network 
deployment especially the Total Cost of Ownership (TCO), 
rapid deployment and adaptability. Therefore, a number of 
past and present researches on the issue have been done to 
develop new architectures and concepts such as the 
FEDERICA project [2,3,4], which combines network control 
mechanisms with virtualization techniques, and VINI project 
[5], which is considered as an instantiation of overlay 
networks. In addition, we find in the literature three most 
recent projects, named GENI [6] in USA, 4ward [7] in Europe 
and AKARI [8] in Japan.  

GENI with its OpenFlow solution [9] adopts a clean slate 
approach [10]. This latter has proposed a completely 
redesigned architecture. It was considered the base element for 
new generation network researches. OpenFlow defines the 
virtualization as a slice of network resource on space and time.  

Regarding the 4ward, it presents network virtualization as 
coexistence of several networks on the common physical 
infrastructure. Its main specificity is the presentation of virtual 
network business model with three actors: VNP (Virtual 

Network Provider), VNO (Virtual Network Operator) and InP 
(Infrastructure Provider). 

With respect to AKARI project, it is based on the principle 
of Competition and Natural Selection. This later means that 
the best and optimal network virtualization solution is 
automatically selected from several competitive "clean slate" 
architecture propositions.   
Among these projects mentioned above, only OpenFlow 
proposes its own simulator, called “Mininet”[11] in addition 
to many other network components such as Flowvisor (the 
network hypervisor) [12]. 

This paper analyzes and compares the mentioned projects 
(GENI, 4WARD and AKARI), with a main focus on 
Openflow solution to validate on-demand virtual network 
architecture based on the Mininet simulator. It is organized as 
follows: Section 2 analyzes the three virtual network 
approaches proposed by Openflow, AKARI and 4ward. 
Section 3 shows a comparison between them based essentially 
on the flexibility, programmability and scalability. Section 4 
presents the on demand network architecture. Section 5 
describes the simulation of the on demand network 
architecture using open flow simulator Mininet combined with 
the openflow flowvisor. Finally, Section 6 concludes the paper 
and presents our forthcoming works. 

II. RESEARCH APPROACHES FOR NETWORK VIRTUALIZATION 

In this section, we describe deeply the three projects 
already mentioned. 

A. OpenFlow  

 
Fig. 1.  OpenFlow network architecture 



 
 

 
Initially, Openflow approach was the separation of two 

usual functions: control and forwarding (data path) often found 
in network devices such as router. Thus, there are two network 
components: the switch which guarantees the data forwarding 
and the controller that makes routing decisions. The 
communication between Controllers and switches uses the 
OpenFlow protocol [8] defining its own set of messages 
(packet-received, send-packet-out, etc.).  

Openflow approach has moved to the network 
virtualization and consequently network hypervisor has been 
introduced, named flowvisor. As shown in Figure 1, the 
flowvisor plays the role of proxy between switches and 
controllers. Compared with the virtualization of operating 
systems, the flowvisor corresponds to the virtualization layer 
located between the hardware layer (OpenFlow-enabled 
switches) and the software layer (OpenFlow controllers).  

The Flowvisor divides network into logical partitions called 
slices. One slice corresponds to the data flows running on 
switches’ topology [13]. Slices work independently and 
separately. Each one controls only its own packet transmission 
and has a controller. Thus, the same hardware forwarding plane 
is shared by multiple logical or virtual networks.  

Flowvisor takes into account quality of service and security 
constraints since it offers a number of isolation mechanisms 
like OpenFlow control isolation, bandwidth isolation, topology 
isolation, and flow entries isolation (it counts flow entries in 
each slice and ensures that it does not exceed a prefixed limit). 

The idea of OpenFlow has led to concrete products: Open 
Flow Switch(for switches), NOX[15] (for controllers) and 
Flowvisor [12].  In addition, the OpenFlow Solution is 
validated using its own Mininet simulator. It is also worth-
mentioning that several network equipment manufacturers 
(Cisco, HP, Juniper, etc.) have integrated the OpenFlow 
protocol in their products.  

Finally, Open Networking Foundation (ONF) adopted the 
OpenFlow approach as its first standard for Software-Defined 
Networking (SDN) [16]. 

B. 4WARD 

 

 

Fig. 2.  Business model of virtual network 

 

The 4ward project defines virtual network architecture related 
to three actors: Infrastructure providers (InP), Virtual Network 
Providers (VNP) and Virtual Network Operators (VNO) (see 
Figure 2). 

• The Infrastructure Provider (InP) is responsible for 
the maintenance of physical resources like routers, 
network links, and wireless infrastructure. It enables 
virtualization on network equipment.  

• The Virtual network provider (VNP) is in charge of 
virtual network construction using virtual resources 
or partial topologies provided by one or more InPs. It 
also ensures the virtual network management.  

• The Virtual Network Operator (VNO) is responsible 
for Virtual Network configuration. It connects 
customers to virtual network services.  

 
In order to precise the limits and the responsibilities of each 
actor, 4ward defines interactions between them:  

• VNO can request a VNP to create a new virtual 
network and to modify or to withdraw an existing 
one. This is depicted with (1) in Figure 2.  

• VNP can demand and negotiate network resources 
from InP. After resources allocation, it can request 
the installation of the virtual network and ask the 
migration of virtual nodes (between infrastructure 
providers). This is represented by the (2) in figure 2. 

• Infrastructure provider can accept or decline the 
request of virtual network creation. This is shown by 
(3) in figure 2.   

The highlight of 4ward virtualization approach is the 
ability to encompass wired and wireless networks. This 
project has dealt with numerous aspects of quality of service 
and mapping processes for assigning virtual networks to 
shared substrates networks.  

The disadvantage of 4ward solution is the shortage of its 
implementation and validation. It roughly remains on the 
theoretical state. 

C. AKARI 

AKARI defines network virtualization as the technology 
that allows a shared physical core network to appear as 
multiple logical networks [17]. It enables users to construct, 
deploy, and evaluate multiple network architectures on a 
shared core network. For AKARI, There are three possible 
virtual network models, detailed in Figure 3: 

• Isolated virtual network (Figure 3-a): its purpose is to 
enable the same physical resources to be shared by 
multiple independent and isolated logical networks. 

• Transitive Virtual Network (Figure 3-b): its objective 
is to facilitate the migration from current architecture 
to the newly developed. 

• Overlaid Virtual Network (Figure 3-c): It is defined as 
multiple and simultaneous architectures implemented 
using the same resources. 

 



 
 

 
Fig. 3.  AKARI architecture for network virtualization [8] 

AKARI details four requirements to be considered in 
network virtualization architecture design: 

• Determine in which layer virtualization will be 
performed.  

• Resource management and the operational cost must 
be well measured because of the presence of 
distributed management plan shared by multiple 
cooperative virtual networks. 

• Scalability mainly in isolated networks presented 
above.  

• Virtualization should not only be limited to the 
network-layer but also studied in the physical layer. 
Since optical and wireless networks continue to be 
more familiar technologies in the future, it is suitable 
to investigate the problem regarding isolation and 
allocation of existing physical resources. 

AKARI model is limited to a general description of the 
network virtualization architecture highlighting the 
requirements of its realization but without any precision on 
how to modulate or/and to implement this proposal.   

III. COMPARISON OF DIFFERENT VIRTUAL 
NETWORK SCHEMES 

This section presents a qualitative comparison between 
virtual network schemes described in section II.    

Comparison criteria mentioned in Table-1 are enthused by 
other researches [1, 18, 19] and motivated by On-Demand 
project. As said before, the purpose of the project is to offer on 
demand network services using virtualization technologies and 
dynamic programming equipment.   

4ward is the only project that defines the virtual network 
actors but it has unfortunately remained a theoretical model 
without any continuity. On the other hand, AKARI project 
presents rules that must be respected for designing efficient 
virtual network architecture. This talented architecture should 

verify certain requirements and takes into account the current 
problems of the Internet. Likewise, AKARI is still a theoretical 
proposal without implementation. 

TABLE I.  COMPARISON OF VIRTUAL NETWORK SCHEMES 

Characteristics 4WARD AKARI OpenFlow 

Scalability Theoretical 
Model 

Theoretical 
Model 

Not finalized 

Virtualization 
Layer 

All layers All layers All layers 

Virtualized 
infrastructure 
actors 

(InP, VNP, 
VNO) 

Not defined Not defined 

Standardization VNRG-IRTF  
FGFN-ITU-T  

ITU-T OpenFlow 
ONF  

Interoperability Theoretical 
model 

Theoretical 
model 

Limited 

Programmability Programmable Not defined Programmable 
Availability Defined in 

theoretical 
model 

Not defined Not defined 

Maturity Medium Medium High 
Virtualization 
Layer  

All layers Not defined All layers  

Products No product No product OpenFlow 
components 
(Open vSwitch, 
NOX, etc…) 

 
OpenFlow is the only solution that has implemented and 

imposed its model despite of some drawbacks concerning its 
scalability. This implementation has proved its feasibility, 
efficiency and maturity; that is why it has been approved by 
several most network equipment manufacturers like Cisco and 
Juniper.  

Among all presented network virtualization models in table 
I, there is no solution that satisfies all required characteristics. 
In other words, there is no perfect model. Hence, it is very 
interesting to design a perfect model that answers all needs of 
network virtualization, but it should prove its feasibility. 
According to the latter sentence, OpenFlow seems to be the 
satisfactory solution for the future network virtualization. This 
justifies our choice for the openflow architecture to simulate 
the On demand network architecture. 

IV. OUR ON DEMAND NETWORK ARCHITECTURE  

The aims of On-Demand project are to design and to 
provision a network architecture that meets the following 
requirements: 

• Virtualization: that takes into account the current 
network virtualization solutions in terms of maturity 
and efficiency, 

• Programmability: dynamically reconfigurable 
architecture, 

• Scalability: the ability to meet the growing demand 
of network resources. 

In this section we propose on demand architecture 
presented in figure 4 that combines the advantages of the three 



 
 

schemes (4WARD, AKARI and OpenFlow) and responds to 
On-Demand project goals: 

• It uses the implemented OpenFlow components that 
will be more detailed in the simulation section, hence 
based on Table I it is a programmable architecture, 

• It takes into account the constraints proposed by 
AKARI. Indeed in our proposition, virtualization 
affects all layers; the scalability requirement will be 
validated in simulation section but the operational 
cost of this architecture is not treated in this article. 

• It considers the definition of the virtual network 
actors provided by 4WARD: 

 
Fig. 4.  On demand network architecture 

The physical Infrastructure Provider (InP) is the responsible 
for the establishment, the maintenance and the configuration of 
OpenFlow enabled switches.  

The Virtual Network Provider manages the flowvisor,  sets  
slices and shares the logical management of switches with InP. 
It is also responsible for the network resources allocation to the 
Virtual Network Operator with the InP.  

The controller is managed by the Virtual Network Operator 
(VNO), which connects the end-users to virtual network 
services.  

This architecture satisfies On-Demand project requirements 
since it provides on demand network services using OpenFlow 
standard. 

V. ON DEMAND ARCHITECTURE SIMULATION 

This section presents the simulation of on demand network 
architecture (described in the previous section) using 
OpenFlow Simulator. It describes the simulation environment, 
and the simulation results.  

A. Simulation Environment 

As illustrated in figure 4, three Openflow components are 
needed: Controller, OpenFlow-enabled switch and flowvisor. 

In OpenFlow, like in Software-Defined Network SDN, 
there is a separation between control and forwarding planes 
guaranteed by: 

• Network operating systems, represented by Openflow 
Controllers like NOX[15], Beacon[20] and 
Maestro[21], control network using the 
functionalities  involving access control, network 
virtualization and energy management.  

• OpenFlow Switch consists of a secure channel to the 
controller and one or more tables, which ensure 
packet lookups and switching. It provides three 
features: forwarding packets’ flow to a given port (or 
ports), encapsulating packets using secure channel 
[22] and sending it to the controller. 

• The third component used in this simulation is the 
Flowvisor, responsible for the network virtualization 
by setting network resources slices and assigning 
their control to the controller. Controller’s Slice 
policy fixes slice’s rules. 

Mininet is an Openflow prototyping environment, used to 
implement, test and validate an OpenFlow architecture in a 
large topology. The current Mininet version 1.0.0 can simulate 
only the Openflow switch and controllers because it does not 
contain the flowvisor software.  

To overcome this problem, the best solution is to simulate a 
switches’ network using Mininet and to connect it to flowvisor 
playing the role of remote controller. To realize this simulation, 
we install each component (Flowvisor and NOX controller) 
and the Mininet simulator in three different virtual machines 
and we connect between them.  

B. Simulation Results  

This simulation is the first step to validate the concept of on 
demand network architecture  

TABLE II.  VALIDATION SET UP TIME AND END TO END BANDWIDTH  

Switches Number Set up time End to End bandwidth 

50 66.572 s 189 Mbits/s 
200 273.003 s 50,4 Mbits/s 

300 500.184 s 41.1 Mbits/s 
400 834.043 s 28.6 Mbits/s 

 
This simulation assumes that the flowvisor is already set and its 
configuration time is neglected. We create only one slice 
management which includes all network switches. Setup time 
is the time required to create Mininet Switches plus necessary 
time to make link between switches’ network and flowvisor 
plus needed time to make link between flowvisor and NOX 
controller. These results give us an idea about On demand 
architecture deployment.  As shown in this table, the time 
required for virtual network implementation is about few 
minutes. The main purpose of this simulation is to test 
scalability of our on demand architecture by varying number of 
switches deployed. The scalability criterion is maintained even 
with the slight degradation of the bandwidth. 



 
 

VI. CONCLUSION 

In this paper we have presented three virtual network 
proposals provided by AKARI, 4ward and Openflow projects. 
We have made a comparison between them based on several 
criteria such as maturity and programmability. OpenFlow is 
selected as the most appropriate solution for the On-demand 
project due to its deployability, maturity and programmability.  
Then we have presented On demand network architecture 
simulation with Openflow simulator “Mininet” and the 
software Flowvisor.  

Simulation of this architecture is the first step in the On-
demand project. It will actually be used to implement a secure 
private cloud. This will constitute our future works.  
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